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DATA MODELING USING QUANTILE AND

DENSITY-QUANTILE FUNCTIONS

by Emanuel Parzen

Texas A&M University
Institute of Statistics

Abstract

Statistical data modeling is a field of statistical

reasoning that seeks to fit models to data without using

models based on prior theory; rather one seeks to learn the

model by a process which could be called statistical model

identification. When analyzing a sample X)., ... X

statisticians should not confine themselves to either fitting

a Gaussian distribution, or transforming the data to be

Gaussian. Such an approach ignores the importanceof bimodality

as a feature of observed data, and also ignores the need to fit

to data probability model based distributions which could sug-

gest probability models for the causes generating the data.

This paper describes an approach to statistical data modeling

which emphasizes estimation of quantile and density-quantile

functions; it treats the Gaussian distribution as just one of

the available distributions.

*Emanuel Parzen is Distinguished Professor at the Institute of Statistics,

Texas A & M University, College Station, Texas, 77843. This research

was supported in part by the Army Research Office (Grant DAAG29-80-C-0070).



Sections 1-3 introduce the role of quantile functions in

statistical modeling, the sample quantile function, and location

and scale parameter models. Quantile function based

descriptors of a probability distribution are defined

(Section 4). Section 5 defines quantile box plots and trans-

formation distribution functions; an example of their appli-

cation is discussed in Section 6. A quantile version of "boot-

strap" simulation methods is outlined in Section 7. Data summary

by a few values of the sample quantile function is discussed

(Section 9). Section 8 discusses quantile function formulations

of robust estimators of location and scale.

The concepts discussed in this paper are best summarized

by a list of some of the terminology defined: quantile function,

density-quantile function, score function, sample quantile

function, sample quantile-density function, histogram-quantile

function, sample entropy, score deviation, tail exponents, mode

percentile, quantile box plot, cumulative weighted spacings

plot, quantile bootstrap, minimum residual score deviation

estimation, and 19 quantile values for universal data summary.
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1. Some Basic Concepts of Statistical Modeling and Estimation

One of the basic problems of statistical data analysis is

the one-sample problem: given a sample X1 , ... , Xn which we

assume initially to be independent observations of a population

characteristic represented by a random variable X, we would like

to infer the probability distribution of X.

The probability distribution of X is usually represented

by its distribution function

F(x) = Pr [X < x]

and by its probability density function

f(x) = F'(x)

In this paper we assume X is continuous and possesses a proba-

bility density function.

The problem of statistical inference is often defined to

be parameter estimation-; then one assumes that the true proba-

bility density function f(x) belongs to a family of functions

f (x) indexed by a vector e of parameters el, ... er

The maximum likelihood estimator of 0 is defined to be a function

of XI  ... , Xn satisfying L(6) x L(e) defining

n

L(e) = fa(Xl .... Xn) = l fe (X)

L(e) is the joint probability density of the observed data

when e is the true parameter value.

• A
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Maximum likelihood estimation is not a principle to be

accepted uncritically; statisticians delight in constructing

examples in which it leads to unbelievable conclusions. To

understand when and why maximum likelihood estimation works,

we have to introduce empirical distribution function (EDF)

F(x) defined by

F(x) = fraction of X... Xn< x

To graph F(x) , one determines the order statistics

X( )  X(2 )  X(n ) which are the sample values (assumed

to be distinct) arranged in increasing order; then

F =, X x < X j 0, 1, 2, ... , n, ' (j) -(j+l) ," '

where X(0 ) - and X(n+l) =

The concept of likelihood is now defined as average log

likelihood

n
L (0) = 1 log n fe(Xi)n j=l

1 n

n log fe(X )mn j=l

00

f log f0(x) dF(x)

One can regard Ln (0) as a measure of "distance" between the

data represented by F, and the model represented by fe(x)
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Another important interpretation of Ln(e) is an estimator

of a "distance" between the true probability density f(x) and

the model f0 (x) An important role in the theory of statis-

tical inference is played by the Kullback-Liebler information

number, or directed divergence (see Zacks (1971); it is defined-

by

f]
I(f;f0 ) = Ef [log T 8

- f log f(x) dx

= H(f;f) - H(f;fe)

defining

H(f;g) = f.f(x) log g(x) dx

It has the properties: l(f;f,) , 0 and I(f;f) = 0

The average directed divergence between f and f8 given a

sample XI, ..., Xn is

I f(Xl.... Xn)
in (f;fo) n Ef log fs(Xl, .... Xn)

1 00 O f(xl''''.'Xn) dXl . ,dxn
n .f_.... _ .f(xl" "..'Xn)logf e (xI 0  . ,xn )  ",

I (f;f f)
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A criterion for model fitting is to choose f0 to minimize

I(f;f 0 ) or an estimator of I(f;f 6 ) ; an estimator would be

I(f;f0 ) = H(f;f) - H(f;fe)

if f were a non-parametric estimator of f. While F is a natural

non-parametric estimator of F, there does not exist a natural

non-parametric estimator of f. However a natural non-parametric

estimator H(f;fe) of H(f;fe) does exist, narely the average log

likelihood Ln (e); in symbols,

H(f;f0 ) = f log f0 (x) dF(x)

A natural estimator H(f;f) will be given below. Akaike (1973)

has pioneered in emphasizing that to find 0, the parameter values

0 which minimize

l(f;f0 ) = H(f;f) - H(f;fe)

it is not necessary to know H(f;f) : one need only choose 8 to

maximize Ln(0) . One approach to measuring how well the maximum

likelihood model f" "matches" the data would be to measure how

significantly different from zero is I(f;f^) Other approaches

to measuring the mathematical fit of a model to data are intro-

duced in this paper using various representing functions of the

data and model which are called the "raw" and "smooth" repre-

senting functions respectively. One of our goals is to develop

means of judging goodness of fit of a family f8 of probability

densities to a true probability density before forming
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estimators 6 of the parameters.

This paper discusses the increased insight to be obtained

by describing the probability distribution of a random variable

X by its quantile function Q(u) , 0 < u < 1 , and density-

quantile function fQ(u) , 0 < u < 1 Define

Q(u) = F-I(u) = inf {x:F(x) > u}

fQ(u) = f(Q(u))

The quantile-density function q(u) , 0 < u 1 , is the derivative

of the quantile function:

q(u) = Q'(u)

The score function is (-1) times the derivative of the density-

quantile function:

J(u) = -(fQ)'(u)

An important identity is

fQ(u) q(u) = 1

which follows by differentiating the identity

FQ(u) = u.

We can now give an example of the advantages of thinking

"quantile" in the sense of thinking in terms of fQ(u) rather

than f(x) Two measures of the smoothness of a function are
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the integral of its logarithm and the integral of its derivative

squared. Thus

1
f0 log fQ(u) = Lf(x) log f(x) dx = H(f;f)

is the Shannon information measure or entropy of f, while the

Fisher information measure of f is

1 1
f0 IJ(u) I2du f0 IfQ'(u) 12 du

1 f, u) 2 Co t2

0 f Q(u)j du = f If (x )1 2

One can give a natural estimator of entropy:

1

H(f;f) - log q(u) du
0

where q(u) is the sample quantile-density defined below. We

call H the sample entropy.

The density quantile function as a function of interest

for itself was introduced by Parzen (1979). Tukey (1965)

pointed out the significance of Q(u) and q(u) under the names

"representing" function and "sparsity" function. A review of

some standard approaches to statistical modelling is given by

Ord and Patil (1975).
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2. Sample Quantile Function

To a batch of data one can define a sample quantile function

Q(u), 0 < u < 1, which provides a "universal" description and

summary of the data. However, there is no universally accepted

definition of Q(u).

Given a sample X1 , ... , Xn , with order statistics

X(I) X(2) X(n) one could define Q by

Q(u ) = -l(u) , 0 < u < 1

then Q is piecewise constant,

Q(u) = X < u < , j = 1, 2, .. n
(j) n - n

One often prefers a piecewise-linear definition of Q(u);

then one defines

Q(u) =  X if u = _j-0.5 r --
n

One also defines values for u = 0 or 1, say Q(0) = X(l) and

Q(M) = X(n )  At other values of u in 0 < u < I , one defines

Q(u) by linear interpolation of its values at the grid points

(j-.0.5)/n or j/(n+l) Then Q(u) is differentiable, and

q(u) = Q'(u) may be expressed in terms of the sample "spacings"

n {X(+l) - X(j)}

When Q(u) = X(j) at u - (j-0.5)/n , then(j = 1, 2, ... -),

q(u) = n IX - X } -0.5 < u < jn
(j+l) (j) n n
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A favorite tool of statistical data analysis is the

histogram which can be defined as a piece-wise constant esti-

mator f(x) of the density function. The sample quantile

function Q(u) is then defined as the inverse of the sample

distribution function F(x) = fx'(y) dy The insight in a

histogram seems to me to be made more visible by plotting

instead the histogram-guantile function f(Q(u)), 0 < u < 1

A raw estimator of fQ(u), called a raw density-quantile

function and denoted fQ(u), can be formed from the reciprocal

of a slightly smoothed estimator of q(u); for example, one

might define

2hfQ(u) = - _
Q(u+2h) - Q(u-2h)

The sample quantile function Q(u), 0 < u < 1, is a

stochastic process (or time series) whose asymptotic distri-

bution can be shown to satisfy (under suitable assumptions on

fQ; see Csorgo and Revesz (1978)).

L
{/nfQ(u){Q(u) - Q(u)} , 0 , u < 1}--> = {B(u), 0 < u < i1

where {B(u), 0 < u 1 , denotes a Brownian Bridge stochastic

process with covariance function

E[B(ul)B(u 2 )] = ul(l-u 2 ) for 0 < uI _ u2 i,

L denotes "identically distributed as", and the convergence is

in the sense of convergence of distribution of stochastic processes.
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The asymptotic distribution of the sample spacings, and

thus of q(u), also have been extensively investigated but i6

difficult to summarize briefly. One important fact is that

for any fixed ul, . . .. . uk

fQ(Ul1) (uI ) ..... fQ(uk) q(u k )

are asymptotically independent and distributed as an exponential

distribution with mean i.

The difference between the roles of distribtuion functions

and quantile functions in statistical inference is made clear

by considering the basic goodness of fit problem: test the

hypothesis H0 P

Ho: F(x) = Fo(x) , < <

that the true distribution function F(x) equals a specified

distribution function Fo(x). One could compare the sample

distribution F(x) to F0 (x) (or equivalently test whe-her the

transformed random variables Fo(X. ) ..., F0 (Xn ) are uniformly

distributed) by comparing F(Qo(u)) to u. The applicable

asymptotic distribution theorem is

L
{Un{F(Qo(u)) - u), 0 < u < 1} -

= {B(u) , 0 < u < l}

Alternately one could compare quantile functions. Instead

of comparing Q(u) to Q0 (u) = Fo (u), one could compare the

sample quantile function of Fo(XI), ... , F0 (Xn ) , which equals



-10-

F o(Q(u)), to u. The relevant asymptotic distribution theorem

is

L
{/n{F 0 (Q(u)) - u} , 0 _< u < l}-- = {B(u) , 0 < u _ 11

The problem of statistical modeling can be elegantly defined

in terms of quantile functions: one seeks to determine distri-

bution functions F0 (x) such that F0 (Q(u)) is not significantly

different from a uniform quantile function u. Given a para-

metric family of distribution functions Fe(x) an optimal esti-

mator 0 of o could be defined as the value of 0 which minimizes

the distance 11F 0(Q(u)) - uj I for a suitable measure of distance

between functions on the interval 0 to 1.

An example of a distance is the conventional L2 distance

2 =1f 2d
11g 1 - 9211 f0 1g1 (u) - g2 (u) 2 du

However, one would like to choose the distance so that the estimator

would be asymptotically efficient. Such a distance is pro-

vided by the reproducing kernel Hilbert space (RKHS) norm of

the covariance kernel of the Brownian Bridge stochastic process;

it can be defined over any sub-interval 0 < p < u < q < I

2 q 2 i 2

2pq = fqIgi(u) - g2 (u)2 du + - g2(P)I

+ gl(q)- g2 (q)2

2 1
i1g1 -g2 110 1 = f jgi(u) - g (u)12 du
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,-The inner product is

(glg)pq fpgl(u) g (u) du + gl(p) g2 (p)

+ igl(q) g 2 (q)

A minimum distance criterion for statistical estimation

of the parameters 0 of a parametric family F of distribution

functions is to choose 0 to minimize

11 F0 (Q(u)) - u11 2 = 1 f0 (Q(u)) q(u) - 112 du
0

One may show this criterion to be asymptotically equivalent

to maximizing likelihood, or minimizing the estimated directed

divergence I(f,f0)

( ) f (x) log f(x) dx

= - f0 log {f0 (Q(u) q(u)} du

A-v ."



3. Location and Scale Parameter Models.

An important parametric model for a distribution function

F(x) is

F(x) -F 0 ( )

where F0 is specified, and p and a are unknown (location and

scale) parameters to be estimated. Then

Q(u) = P + a Q0 (u)

q(u) = u q0 (u)

fQ(u) = I f0 Q0,(u)

Two important choices for F0 are:

(1) the normal or Gaussian case:

x

F0 (x) = D(x) = f.0(y) dy

f 0 (x) = W exp - x

(2) the exponential case:

F0( le -' , f0 (x) e-
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The quantile functions, score functions, and density-

quantile functions of some standard probability laws are given

in the Table. Graphs of density-quantile functions are given

in the Figures.

Because of the way that fQ(u) depends on ii and a , one

can introduce functions to test hypothesis H0 : Q(u) = W + 3Q0 (u)

which do not require estimation of p and a before testing the

hypothesis. Define

I

C0 = f0 f0Q0(u) q(u) du

d(u) = 1 f0 Q0 (u) q(u)
0

D(u) = f 0 d(u') du'

We call D(u) a transformation distribution function, and d(u) a

transformation density. The null hypothesis H0 is equivalent

to

D(u) = u , d(u) = I , 0 < u < i

Given an estimator D(u) , 0 < u < 1 , the deviations of D(u)

from linearity can be used to test whether a sample consists

of random variables satisfying H0 , or consists of random

variables satisfying H0 plus outliers. Such techniques would

be useful for many diverse applications.
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Figure A

Density Quantile Functions fQ(u) , 0 < u < 1 of some

common probability distributions Lognormal, Logistic, Normal,

Cauchy,Weibull with various shape parameters, and Extreme Value.
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4. Quantile Based Measures of Average, Deviation, Tail Behavior,

and Modes.

We propose that the sample quantile function provides a

representing function for the sample in the following senses:

(1) Models for the data should be viewed as being in

one to one correspondence with the smooth quantile

functions Q(u) , 0 _ u. 1 which are their representing

functions,

(2) The criteria for testing whether a model fits the data,

should be based on measures of fit between the repre-

sentating functions Q(u) and Q(u) ,

(3) Since the sample is summarized by its representing

function Q(u) , any descriptor of the sample should be

expressible as a function of Q(u) . Similarly any

descriptor of the distribution of X should be expressible

as a function of Q(u)

There are four characteristics of a probability distribution

which we would like to infer from the data:

(1) location, represented by a measure of average;

(2) spread, represented by a measure of deviation

(3) tail behavior, represented by the behavior of fQ(u) as

u tends to 0 and 1

(4) modality, represented by the number of modes (relative

maximum) in the probability density or in the density-

quantile function.
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Location and spread parameters for a distribution seem to

be meaningful only when it is unimodal; otherwise, one may

want to find an associated variable whose values can be used to

divide the original sample of X values into two or more samples,

each of which is unimodal.

A parameter representing average or location will be denoted

by w; it could be defined by one of the following concepts:

median ij = Q(0.5) ,

mid-quartile it = 3 (Q(0.25) + Q(0.75))

mid-range p = A{Q(O) + Q(l)}

mean = 1 Q(u)d = f0xfW(x)dx

A parameter representing deviation or spread or scale will

be denoted by 0; it could be defined by one of the following

concepts:

interquartile range a = Q(0.75) - Q(0.25)

I
Score deviation a = f0 J0 (u)Q(u)du with score function J0 (u)

standard deviation a = {fl (Q(u) - f'Q(t)dt} 2du}

The properties of fQ(u) describe the tail behavior, modality,

and symmetry of the distribution. Indices a, and a2 such that

fQ(u) u as u -4 0

fQ(u)% (1-u) as u--
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may be rigorously defined when they exist by

lim uJ(u) lim (l-u)J(u)
,I = u 0 FQu ' (2 - u -4 I fQ(u)

We callal the left tail exponent, and a 2 the right tail ex-

ponent.

The tail exponent a indicates whether the tail is short,

medium, or long: a < 1, short; a = 1, medium; a > 1, long.

The Gaussian distribution has 11 = (2 = % 
= 1; the expon-

ential distribution has a1  0 and a2 = 1; the Cauchy distri-

bution has a, = c2 = a = 2 The graphs of their fQ functions

are given in Figure A. Our ideas of the canonical shapes of

,-stributions seem to me to become unified when they are

formulated not in terms of the shape of f(x) but in terms of

the shape of fQ(u); for example, J and U-shaped distributions

correspond to a < 0

When fQ(u) is unimodal, an important descriptor is the

mode percentile, denoted pmode ' It is defined to be the

value of u at which fQ(u) achieves its mode (or maximum value).

The value of pmode and its relation to 0.5, is a quick sum-

mary of the skewness of the distribution.

When p-mode > 0.5 , the distribution is conventionally

described as being skewed to the left; this occurs if we assume

that fQ satisfies fQ(u) < fQ(l-u) , 0 < u < 0.5 , which implies

that Q(u) + Q(l-u) < 2Q(0.5) , and consequently that

mean < median < mode
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Similarly p-mode < 0.5 (and the distribution is skewed to

the right) if we assume that fQ(u) > fQ(l-u) , 0 < u < 0.5,

which implies that Q(u) + Q(l-u) > 2Q(0.5) , and consequently

that

mean N median > mode

The fact that a density-quantile function is always defined

on the unit interval, while a density function f(x) is defined

on an infinite interval, seems to me to make the former easier

to estimate.

- __ ____ ___ ~------
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5. Quantile Box-Plots and Transform Distribution Functions

The most dramatic new data-analytic tools suggested by the

quantile and density-quantile approach are Quantile Box plots

of Q(u) , 0 < u .,I , and plots of sample transformation dis-

tribution functions 1)(u) , 0 < u < 1

Quantile box plots are formed of the original data and of

the data after transformations such as square root, logarithm,

and reciprocal. They provide quick procedures for estimating

location, scale, and shape. A quantile box plot consists of a

graph of a quantile function on which is superimposed various

boxes with vertices (p,Q(p)) , (p,Q(l-p)) , (l-p, Q(p)) ,

(l-p, Q(l-p)) which we call a p-box. One usually chooses

p = 1/4 , 1/8, 1/16 . Within the quartile box (p = 0.25), one

draws a median line with vertices (0.25, Q(0.5)), (0.75, Q(0.5)).

An approximate confidence interval for the median Q(0.5) is

indicated by a vertical line with vertices (0.5, Q(0.5) + IQ//n)

where n is the sample size and IQ = Q(0.75) - Q(0.25) is the

inter-quartile range. The symmetry of the distribution is

judged by the symmetry of Q(u) within the quartile box.

A quantile box plot is an extension of the idea of a box

plot introduced by Tukey (1977).

A transformation distribution function, or cumulative

weighted spacings function, is defined by

u

D(u) = f0 d(t) dt , < u <

where

d(u) = - f0Q0 (u) q(u) , = f 0 f0Q0 (u) q(u) duGo
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Its pseudo-correlations are defined by

1 2 iuv

C(v) = f0 e d(u) du , v = 0, ± i......

The asymptotic distributional properties of d(u)are similar to

those of the sample spectral density of a stationary time series.

Tests of H0 could be based on fo log d(u) du ; the deviation

from D(u) = u of D(u) ; the deviation from p(v) = 0 of

P(v) , v 1, 2.....

To estimate the density-quantile function fQ(u) , one uses

d(u) to form smooth estimators a(u) of d(u) Two main

approaches are:

(1) kernel method -- for a suitable kernel K

dK(u) = f0 d(t) K(u-t) dt

(2) autoregressive method -- for a suitable order m

^2 I i) e 2 iu ()e u I -

am(u) = m a + Cm( + ... + & (m)e2 7Tium -2

"2

where ;m, &(j) , j = , .... m are determined from certain

linear equations (Yule-Walker equations) in

1i 2iriuv

p(v) d e d(u) du, v = 0, + 1, ... , + m.

The autoregressive estimator, including procedures for

selecting the order m, are implemented in a computer program

ONESAM whose use is illustrated. ltshould be noted that choosing

order m - 0 is equivalent to accepting H0.



A solution to the important problem of estimating fQ(u)

is provided by the "autoregressive" estimator

fQm(U) = f0Q0 (u) t0 dm( u ) ) l

Some diagnostics we use for choosing the order m of the

autoregressive estimator fQm(u) are the square modulus pseudo-
correlations l v 2 2

; the residual variances a (m) ; the

Akaike order determining criterion, for sample size T,

" 2 +2m

AIC(m) = log Cm + ;

and Parzen's criterion

1 m -2 --2
CAT(m) =' I a - -

j=l j m

whose shape in practice is similar to the shape of AIC.

Another approach to estimating fQ(u) which deserves

investigation is to estimate log fQ(u) by smoothing - log q(u)

" -
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6. Examples

To illustrate how to use Q, D, and fQ in statistical

data analysis, let us consider data from Tukey (1977),

p. 117 which lists seasonal snowfall in Buffalo, New York

and Cairo, Illinois, from 1918-19 to 1937-38, and

asks "What light do these two batches throw on how they should

be expressed." To answer this question one approach might be

to examine the quantile box-plots of the batches (Figure B);

the quartile box in Buffalo appears symmetric while in Cairo

it does not. One might attempt a transformation of the Cairo

data; we choose the square root and conclude that its quartile

box is symmetric. Does this prove that Buffalo snowfall and

square root of Cairo snowfall are Gaussian?

A rigorous approach is to form the cumulative weighted

spacings function

fu W¢ltq(t) d t

D(u) = 1 , 0< u< 1
f I -( tP -1W (t) at- -

whose deviations from u provide a test of Gaussian-ness which

does not first require estimation of w and o (mean and standard

deviation). The graphs of D(u) in Figure C indicate clearly

that Buffalo snowfall and square root of Cairo are Gaussian,

while Cairo snowfall is not Gaussian.

The true character of the Cairo snowfall data emerges when

one estimates its fQ function; it turns out to be bimodal, which

we interpret to mean that there are two kinds of snowfall years

in Cairo, Illinois -- light and heavy.
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Even though various diagnostic tests of the square roots
of Cairo snowfall data indicate that it is Gaussian the order

I autoregressive estimator of the density quantile indicates
that bimodality is a possible alternative hypothesis.
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Order Buffalo Cairo Cairo SquareStatistics 
CRoot

1 25.0 0.4 .63252 39.8 1.2 1.09543 46.7 1.6 1.26494 49.1 1.8 1.34165 49.6 2.7 1.64326 51.6 2.9 1.70297 53.5 3.0 1.73208 54.7 4.0 2.000o9 60.3 4.5 2.121310 63.6 5.4 2.323811 64.8 6.2 2.490012 69.4 6.8 2.607713 71.8 7.2 2.683314 72.9 7.4 2.720315 79.0 11.3 3.361516 79.6 11.5 3.391217 80.7 11.5 3.391218 81.6 12.4 3.521419 83.6 13.9 3.728320 103.9 14.1 3.7550

Mean 
64.1 6.5 2.375Q(0.25) 49.6 2.7 1.6432Q(0.50) 
64.2 5.8 2.4069Q(0.75) 
79.6 11.5 3.3912IQ 
30.0 8.8 1.748S.D. & 18.4 4.5 0.945

A
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Ki (v) 2 Bufflo Cairu Cairo Square Root

0 1.0000 1.0000 1.0000

1 .0203 .1391 .0705

2 .0187 .0192 .0142

3 .0053 .0215 .0222

4 .0196 .0496 .0289

5 .0169 .0317 .0181

22 (M)

0 1.0000 1.0000 1.0000

1 .9797 .8609 .9295

2 .9657 .8199 .8963

3 .9559 .8179 .8603

4 .9367 .7883 .8570

5 .9021 .7610 .8404

AIC(m)

0 .0000 .0000 .0000

1 .0795 -.0497 .0269

2 .1651 .0014 .0905

3 .2549 .0990 .1495

4 .3346 .1622 .2457

5 .3969 .2269 .3261

Minimum

At m 0 1 0

CAT

0 -1.0000 -1.0000 -1.0000

1 - .9212 -1.0483 - .9709

2 - .8369 - .9877 - .9028

3 - .7497 - .8772 - .8373

4 - .6718 - .8020 - .7361

5 - .6076 - .7235 - .6504
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7. Quantile Simulation and Quantile Boot Strap.

The quantile function Q(u), 0 < u < 1 of a random variable

X provides a way of simulating a random sample of X. Let U

denote a random variable uniform on 0 to i; then X L Q(U)

Let U1 , ..., Un be independent uniform random variables; then

L
Xn  = Q(U I  ... IQ(U n )

To generate a random sample X1, .... Xn, one generates n random

numbers U, .... Un and transforms them to X 1 ... Xn

To obtain by Monte Carlo methods the distribution of a

statistic

T = g(X I, ... , Xn)

one would generate a large number N of random samples XI , .. .  n;

generate a random sample TI, ... I TN of the random variable T;

and finally form the sample quantile function QT(U) which provides

an estimator of the true quantile function of T.

When the quantile function Q(u) of X is not known, one can

estimate it by the sample quantile function Q(u) Now from

random numbers U1 , ..., Un, one can generate "boot strap" simu-

lated values [compare Efron (1978)]

XI m Q(UI Xn = Q(Un = g(XlI ... X n )

One can generate a random sample T1 , .... TN of T , whose sample

quantile function Qt(u) provides an estimator of the true quantile

function of T.
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Bivariate distributions. An outstanding problem of

statistics is the simulation of multivariate distributions.

To illustrate the quantile approach to this problem, let

(X , X2 ) have joint distribution function F(xl, x2). Denote

the marginal distributions functions of X, and X2 by Fl(xl)

and F2 (x2 ). Denote the quantile functions of the marginal

distributions by Ql(ul) and Q2 (u2 ) Define

D(ul,u2) = F(Ql(ul) , Q 2 (u2 ))

it is the joint distribution function of the "rank transforms"

U1 = FI(X 1 ) , U2 = F2 (X2 )

One can generate (XI,X2 ) by generating (UlU 2 ) from the dis-

tribution D(ulu 2) and then forming

XI= QI(UI) , X2 = Q2(U2)

To generate (U1 , U2 ) one chooses U1 to be uniform on

0 to 1, and then generates U2 by the conditional distribution

DU21U I (u2 1uI ) or its quantile function QU2JU1 (plu I ) by the

formula U21U I mUl LQU2 1  (U ju I) where Ui is uniform

on 0 to i, and independent of UI I The conditional quantile

function QU21U (plu I ) can be estimated by the sample

quantile function of the sample values U2 corresponding to

sample U1 values near u,
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p. Quantile Formulation of Robust Location and Scale Estimators.

Assume a location-scale parameter model for the quantile

finction of a continuous random variable X: Q(u) = ji + ,Q0 (u)

Assume a symmetric distribution, which is equivalent to Q0 (u)

being an odd function in the sense that Q0 (l-u) = -Q0 (u)

Given a sample X1, .... Xn the log likelihood function

may be written in terms of the sample quantile function [compare

Parzen (1979a)]:

L = log f(X I, ., Xn;,)
nn

n 1 fX in-
n X log f (
ni=l o 1

= -log a + f ,log f 0 (x11) dF(x)

= -log a + flog f0 (Q(u)-)du

The maximum likelihood estimators w and a satisfy 0 and

L= 0 An important role in these equations is played by the

Fisher Score function

= - f6(x) d
o(X) F(X) - - log f0 (x) ; (2)

Between p and the score function J0 (u) = - (f0Q 0 (u))' , there

S
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is an important relation:

J0 (u) = (Q0 (u)) (3)

The maximum likelihood estimators i and are the solutions of

f10 (Q u)- P)du = 0 (4)
0 C,

fo y(u {Q(u)-6}du
0

Under the symmetry assumption one seeks robust estimators

of location; various standard estimators may be heuristically

motivated by approximating (4) in suitable ways.

M-estimators are defined by introducing a window

1
w(x) = - p(x)

X

Then (4) may be written

f1 w((u)-) Q(u)-6 du = 0

To estimate u, consider the limit of an iterative sequence i(n)

defined by

I - ' (n)
(lw(Q f u)- )Q(u) du

f1(n+l) C (

1)(5)f~w()u-, .d u

The estimator '(n) is an M-estimator. For w(x) one could choose

a function which corresponds to Student's t distribution with

m degrees of freedom [see Parzen (1979a)]:
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w(x) .n+ I

m

Various widely used choices of ,-k 0 are described in Hogg (1979)

The most widely used choice fc w(x) may be Tukey's bisquare

wLndow

w(x) (l-() 2 )2

where c is a suitable constant, often chosen as 6. The choice

of m or c is crucial; it should reflect one's beliefs about

how long are the tails of F0 (x).

L-estimators are linear combinations of order statistics

which can be written in terms of the quantile function Q(u) as

follows, for a suitable weight function W (u):

11I

foQ(u)W ,(u)du

fIw(u) du 
(6)

If the model Q = i + aQ0 is assumed to hold, with a symmetric

Q0, and one chooses

W (u) = '(Q0 (u)) (7)

then o is an asymptotically efficient estimator of V. A rigorous

derivation of (6) and of (10) can be obtained from equation (3)

of section 9. A heuristic derivation of (6) from (4) is obtained

by writing

- ) (Q0(u)) + , (Q0(u))( 9(u),- QO(u )}  (8)

C c
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Since '(Q0 (u)) and Q0 (u) are odd functions, and ,'(Q0 (u)) is

even, the estimation equations for u are

0fl I~'

0= f0 ( ( J) du = f Q0 (u) ) Q(u) - Idu (9)
aa

From (9) one obtains the estimator defined by (6) and (7)

An estimator of o which is asymptotically efficient for the

model Q = j+j Q0 , when F0 is a symmetric distribution, is

fQ(u)W (u)du
a 0 ( (10)

f0Q0 (u)W (u) du

where

Wa(u) = J0 (u) + Q0 (u)W (u) (ii)

It is often the case that W,(u) is approximately equal to J0 (u)

(times a constant such as 1 or 2). This helps explain why the

following definition works.

Score deviations and minimum residual score deviation

estimators. It is a re'irrkable fact that one can define a uni-

versal (and robust) measure of deviation of a sample:

SO = f f0Q 0(u) q(u) du (12)

Assuming that f0 Q0 (u) Q(u) 
= 0 for u = 0, 1, we can write G0

in the form

10 f J0 (u) Q(u) du , (13)

which we call a sample score deviation. To calculate it one has

to specify a score function J0 (u). Note that a0 estimates a

population quantity defined by

A&I
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= J0(u) Q(u) du (14)

which we call a score deviation.

Robust estimators of location called R-estimators can be

interpreted as minimum "residual score deviation" estimators.

More precisely suppose one estimates the location parameter

by an estimator w whose residuals Q(u)-w have smallest score

deviation:

S4 J0 (u) {Q(u) - widu is minimized;

it can be shown that this is precisely the definition of

R-estimators.

M-estimators can also be motivated from this point of view;

to avoid specifying J0 (u) = 40 (Q0 (u)) in (13) one replaces

it by (0) and the criterion to estimate 0 is to minimize

(u) - - ( u) 2So 0( (u)--- ){Q(u) - v~du = fl w(~)-)Q~u-'2 du

(n)
whose solution might be sought as the limit of sequences Wn

of the form of (5)

The fact that R and M estimators of W can be formulated

as minimum residual score deviation estimators seems to explain

why these methods can be extended to estimation of regression

coefficients. However L estimators do not have a natural

generalization to regression. Further R and M estimators yield

asymptotically equivalent results when their J0 (u) and 4

functions satisfy (3).

w m | |
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9. Data Summary by a Few Values of the Sample Quantile

Function.

To form an estimated quantile function Q(u), the simplest

approach is to first attempt to fit a parametric family of the

form

Q(u) = + ] Q0 (u) (1)

where Q0 (u) is a specified quantile function; 0 and a are called

location and scale parameters since F(x) = F0 ( )

One seeks to form estimators and a which are asymptotically

efficient under the hypothesis that the true quantile function

satisfies (1).

Some of the aims for which the quantile function approach

to statistical data analysis may provide rigorous, yet simple,

methods are as follows:

1. to provide approximately efficient estimators of u

and a under the hypothesis H0 : Q(u) = V + a Q0 (u) ;

2. to perform quick goodness of fit tests of H0 , and/or

to find re-expressions (transformations) of the data

which satisfy H0 ;

3. to perform rigorous goodness of fit tests to identify

quantile functions Q0 for which the data satisfies

H0 , and/or to estimate the density-quantile function.

I
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Estimation of ij and U Efficient and tractable estimators of

;i and a which are linear functionals in Q(u) can be found using

the theory of regression analysis of continuous parameter time

series developed by Parzen (1961). The asymptotic distribution

theory of Q(u) permits us to write approximately

Vn fQ(u) {Q(u) - Q(u)I = B(u)

Under H0 ,

Q(u) = p + a Q0 (u) , fQ(u) - if 0 Q0 (u)

Consequently, defining aB = a//n

foQ0 (u) Q(u) = Pf0Q0 (u) + af0 Q0 (u) Q0 (u) + OB B(u) (2)

The parameter aB is linearly related to a, but it is here treated

as a free parameter. In terms of the inner product of the RKIIS

of the Brownian Bridge covariance kernel one may express the

minimum variance unbiased estimators p and given Q(u) for

o < u < or p < u < q, or u = u I, ... , uk as follows

inf I  (3)
a <(foQo)Qo, (foQo)Q>

AL
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where Inf is the Information latrix,

Inf = ((Q 0  0 0  <fQ, fo)Q> )(4)
(Q0 (f0Qo) , f0Q0> <(f0Qo)Qo, (foQ 0)Q0>

2
The variance-covariance matrix of i, o equals B

It should be emphasized that the foregoing expressions are

not valid if f0Q0 (u) and (f0Qo(u)) Qo(u) do not belong to the

RKHS, which can happen in the case of the index set 0 < u < 1.

Failure to belong to the RKHS seems to be equivalent to the

optimal parameter estimator involving a few extreme value order

statistics, which implies that the estimators are not asymptotically

normal.

If one could accomplish these aims using a "few" (say, 7)

selected order statistics, then one could regard these "few"

order statistics as an efficient summary of the entire sample of

size n. If large samples (as well as small samples) could be

effectively represented by a small number of order statistics,

then every data set could be published and each reader could

easily do "hands on" statistical data analysis.

The problem of choosing order statistics for the estimation

of location and scale parameters has an extensive literature.

The density-quantile approach has been investigated by Eubank

(1979) in his Ph.D. thesis. By using location and scale estim-

ators based on only 7 quantile values for a specified Q0 , one

can identify 19 quantile values which are the union of these 7

values over a large number of familiar choices of Q0. The proposed

19 number universal data summary consists of the median Q(0.5);
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the j/16 percentiles Q(j/16 , Q((8+j)/16) for j 7,6,5,4,3,2,1;
and the .01 and .02 percentiles Q(O.01), Q(0.02), Q(0.98),

Q(o.99) We reproduce Tables 31 and 32 of Eubank's thesis whichshows which of these order statistics are used to estimate lo-
cation and scale parameters of familiar probability laws.

-~-.-
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